Op dit moment worden patiënten met hyperkinetische bewegingsstoornissen geclassificeerd op basis van expert opinie. Hierbij wordt in sommige gevallen gebruik gemaakt van elektromyografie (EMG). De classificatie is dus voornamelijk gebaseerd op klinische beoordeling. Het beoordelen van het type hyperkinetische bewegingsstoornis is complex omdat er kleine nuances tussen ziektebeelden zitten en patienten meerdere stoornissen kunnen hebben. Daarbij komt dat de mens haar observatie vanuit een holitische wijze doet en dus altijd naar de samenhang kijkt van hetgeen wordt geobserveerd. Voor een goede classificatie en diagnose van hyperkinetische bewegingsstoornissen is juist een objectieve waarneming van (delen van) het lichaam essentieel. Het gaat hierbij om de frequentie van bewegingen van bijvoorbeeld de bovenarm, de hoeken waaronder dit gebeurt en (on)willekeur. Het gevolg van dit alles is dat de juiste classificatie en diagnose van bewegingsstoornissen momenteel een Kappa-waarde, een maat die gebruik wordt om de overeenstemming tussen de specialisten weer te geven, kent van gemiddeld 0,5 tot 0,6. Dit betekent dat de kans relatief groot is dat een verkeerde diagnose wordt gedaan, een verkeerde behandeling wordt gestart en daarmee de doelmatigheid van de Nederlandse zorg niet optimaal is.
ZiuZ en UMCG willen in dit project onderzoek doen naar hoe kunstmatige intelligentie bij kan dragen aan het verbeteren van de classificatie en diagnose met als doel om deze te verhogen tot tenminste 0,8 en daarmee het aantal ‘foutieve’ behandeling verlaagd. Het doel van dit project is daarom de ontwikkeling van een eerste ‘proof of principle’ van een Computer aided diagnose tool (CAD-tool) dat de diagnostisering, behandeling en evaluatie van natuurlijk verloop van hyperkinetische bewegingsstoornissen moet verbeteren en waarbij gebruik wordt gemaakt van meerdere databronnen (video/sensoren/medische informatie). De projectresultaten zouden vervolgens ook toegepast kunnen worden op bv. Parkinson-onderzoek, hetgeen raakvlakken heeft met tremoren.